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ABSTRACT

BACKGROUND: Sleep deprivation (SD) negatively affects brain function. Most brain imaging studies have investi-
gated the effects of SD on static brain function. SD effects on functional brain dynamics and their relationship with
molecular changes remain relatively unexplored.

METHODS: We used functional magnetic resonance imaging to examine resting-brain state dynamics after one night
of SD compared with rested wakefulness (N = 41) and assessed the association of brain state dynamics with striatal
brain dopamine D, receptor availability measured by positron emission tomography [''Clraclopride using network
control theory.

RESULTS: SD reduced dwell time and persistence probabilities, with the strongest effects in two brain states, one
characterized by high default mode network and low dorsal attention network activity and the other by high fron-
toparietal network and low somatomotor network activity. Using network control theory, we showed that after SD,
there was an overall increase in the control energy required for brain state transitions, with effects varying for different
brain state transitions. Control energy requirement was negatively associated with transition probabilities under SD
and restful wakefulness and accounted for SD-induced changes in transition probabilities. Alteration in the energy
landscape was associated with SD-induced changes in striatal D, receptor distribution.

CONCLUSIONS: These findings demonstrate altered occurrence of internally and externally oriented brain states
following acute SD and suggest an association with energy requirements for brain state transitions modulated by

striatal D, receptors.
https://doi.org/10.1016/j.biopsych.2024.08.001

Acute sleep deprivation (SD) that lasts 24 to 48 hours nega-
tively impacts brain function, affecting cognition, emotions,
reward processing, and incentive-driven behaviors (1). These
adverse effects are believed to arise from an SD-induced
imbalance in brain networks and erratic arousal activity (1).
One brain network particularly susceptible to the effects of SD
is the default mode network (DMN), which is highly active
during rest. SD disrupts DMN connectivity by reducing its
within-network integration (2) and its segregation from the
dorsal attention network (DAT) (3). Most functional magnetic
resonance imaging (MRI) studies of SD have focused on static
resting-state functional connectivity (RSFC), whereas there has
been limited research on the effects of SD on brain temporal
dynamics, which may underlie critical aspects of cognition and
behavior (4). One study that evaluated dynamic RSFC reported
reduced dwell time in states characterized by anticorrelation
between the DMN and other brain regions after SD (5).

In addition to consistent findings from RSFC studies on the
DMN’s sensitivity to SD, various studies have documented the
contribution of dopamine to the effects of SD (1,6). Specifically,
using positron emission tomography (PET), studies have
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shown that one night of SD reduced striatal dopamine D, re-
ceptor (D2R) availability, which accounted for altered brain
activation during a visual attention task (6,7). A follow-up study
further showed that reduced D2R binding after SD reflected
receptor downregulation rather than dopamine increases,
suggesting that D2R internalization could play an important
role in modulating wakefulness (8). Importantly, evidence
points to striatal D2R’s influencing spontaneous brain activity
in the absence of a stimulus or task, with the DMN exhibiting
the most robust associations (9,10).

We considered these convergent findings and posited that
SD would exert a significant effect on resting-brain functional
dynamics by modulating striatal D2R availability. Specifically,
we anticipated that SD would alter brain state transitions.
DMN-dominated states would be the brain states most sus-
ceptible to SD, such that there would be less time spent in the
DMN state and increases in transitions from the DMN state to
other brain states under SD. We also hypothesized that altered
brain state dynamics following SD would be modulated by
striatal D2R-induced changes in energy landscapes. The role
of striatal D2R in arousal is well recognized. Studies on D2R
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knockout mice have shown decreased arousal (11), and human
studies have reported that SD-induced reductions in striatal D2R
were associated with sleepiness (8). Therefore, we expected that
SD-induced changes in striatal D2R would modulate brain state
dynamics by decreasing arousal and increasing overall energy
barriers for brain state transitions.

To test these hypotheses, we applied network control the-
ory, a mathematic tool that models brain state dynamics as a
function of brain structure and control energy (energy required
to transition from one brain state to another) (12,13). In this
study, we aimed to 1) assess SD-induced changes in brain
state dynamics using a data-driven clustering approach to
identify brain states (whole-brain network activation pattern) at
a single time frame, 2) examine SD-induced changes in the
energy landscape that calculates the minimum energy needed
to transition between different brain states or maintain the
same brain state based on normative structural connectome
data obtained from diffusion MRI, 3) test whether SD-induced
changes in control energy are associated with SD-induced
changes in brain state transition probability (14), and 4)
investigate whether SD-induced changes in energy landscape
can be explained by striatal D2R changes following SD. AD2R
maps were calculated as percentage changes following SD in
contrast to rested wakefulness (RW) using [''C]raclopride PET
data. Because a smaller number of control nodes/inputs will
always lead to higher control energy in network control theory,
here we investigated the effect of SD-induced distribution
changes in striatal D2R rather than absolute changes in striatal
D2R availability on control energy.

METHODS AND MATERIALS

Participants

This study included 41 healthy participants (mean age + SD =
41.16 * 13.14 years, 22 female, 51% Black, 41% White) who
spent 2 nights at the National Institutes of Health’s clinical
center. The order of SD and RW conditions were counter-
balanced across participants and were 12.80 = 10.02 days
apart on average. If the SD condition was performed prior to
the RW condition, the protocol specified that there had to be at
least 7 days between the 2 sessions. The MRI scans were
performed between 8 am and 12 pm for both the SD and RW
conditions (average scan start time = 8:30 awm). Written
informed consent approved by the Institutional Review Board
at the National Institutes of Health was obtained from all par-
ticipants. See the Supplement for exclusion criteria and study
procedures.

MRI Acquisition and Preprocessing

See the Supplement for details on MRI acquisition.

The data were preprocessed using CONN toolbox 21a (15)
including rigid body realignment, spatial normalization to
Montreal Neurological Institute space, smoothing (full width at
half maximum = 6 mm), bandpass filtering (0.01-0.08 Hz),
linear detrending, head motion regression (3 rotational, 3
translational and their derivatives), and removal of signals
within the cerebrospinal fluid and the white matter (WM) using
aCompcor, a method for identifying principal components
associated with segmented WM and cerebrospinal fluid. Using
custom MATLAB (version R2022b; The MathWorks, Inc.) code,
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we further removed volumes with a framewise displacement
threshold of 0.25 mm and DVARS threshold of 150%. After
scrubbing, framewise displacement for the SD condition was
0.12 = 0.02, and for the RW condition, it was 0.10 = 0.02.

Analysis of Brain States and Dynamics

To identify brain states, i.e., brain coactivation patterns,
denoised voxel-level data (percent signal changes) were first
parcellated into an augmented 232-node Schaefer atlas (200
cortical regions of interest [ROIs] and 32 subcortical ROIs that
included regions from the hippocampus, amygdala, thalamus,
and striatum) (16,17), and each ROI time series was demeaned.
Then, we concatenated demeaned ROI time series from all
participants and conditions (matrix row: Nparticipants X Niime points;
column: Nggys) and applied k-means clustering (14). The optimal
number of clusters (k) k = 6 was chosen because the additional
variance explained by increasing k beyond k = 6 was <1%.
(Figure S1). Please see the Supplement for details.

Next, we analyzed the dynamic characteristics of the iden-
tified brain states. The fractional occupancy was defined as the
proportion of repetition times assigned to each brain state.
Dwell time was calculated by averaging the length of time
spent in a brain state. Appearance rate was determined by the
total number of times a state appeared per minute. Addition-
ally, transition probability between states i and j was defined as
the probability that state j occurs at the repetition time after
state i, given that state i is occurring.

Complexity/Entropy Index

We calculated two complexity/entropy indices, one based on
the brain state time series and the other on the blood oxygen
level-dependent (BOLD) time series. For the former index, the
more complex the brain state transition pattern, the less pre-
dictable and more entropic it is (18,19). For the latter index, a
higher value indicates less self-similarity and greater brain
activity entropy (20). See the Supplement for details about
calculation.

Structural Connectivity Network Construction

Diffusion MRI data for 1201 participants from the Human
Connectome Project were used to construct a population-level
structural connectome, which has been made publicly avail-
able by Yeh et al. (21,22). We applied the same approach as
described in (23) to construct a volume-normalized structural
connectome with the Schaefer 232 atlas. See the Supplement
for network construction.

AD2R Mapping

['"Clraclopride PET data from 20 healthy male control partic-
ipants were used to map D2R changes induced by SD. Details
for study procedures, PET scan, and analyses have been re-
ported previously (24). For each condition (RW, SD), we esti-
mated the distribution volume ratio (DVR) for each voxel and
used the cerebellum as a reference region. Based on an in-
dividual’s DVR images, we then calculated AD2R DVR maps
for SD-induced percentage changes of D2R availability, i.e.,
(SD — RW)/RW for each participant. Finally, AD2R DVR maps
were averaged and parcellated into Schaefer atlases (16,17).
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Energy Calculations

Network control theory advances our understanding of how WM
structure constrains brain dynamics and allows us to compute the
minimum energy required for brain state transitions and persis-
tence given the WM connections (14). Here, we applied network
control theory to 1) understand how SD alters the minimum energy
requirement for brain state transitions assuming that there were no
WM changes after one night of SD and 2) assess whether changes
in the minimum energy requirement can be explained by SD-
induced striatal AD2R. We employed a linear time-invariant model:

X (t) = Ax(t) + Bu(t) (1)

where x is the brain regional activity at time t, A describes NxN
structural connectome, N is the number of brain regions, and B
contains the control input weights for each brain region, i.e.,
how much energy can be injected into a specific brain region. In
the current study, we calculated minimum control energy under
3 conditions in which the B matrix varied. Model 1 (for RW and
SD conditions): uniformly weighted inputs from all 232 regions
(diagonal values in B identity matrix were 1). Model 2 (for RW
and SD conditions): uniformly weighted inputs from 12 striatal
regions (diagonal values in B matrix were 1 for 12 striatal regions
and 0 for other regions). Model 3 (for RW condition only): SD-
induced AD2R weighted control inputs from 12 striatal re-
gions. Striatal AD2Rs were scaled such that the minimum value
was 1 and then normalized such that the mean of 12 striatal
ROIs was 1 and the sum was 12. The purpose of normalization
was to make sure that models 2 and 3 had the same amount of
control inputs. We compared models 2 and 3 for the RW con-
dition to investigate how SD-induced striatal AD2R affects
control energy. u is the control energy being injected over time.
See the Supplement for calculating the minimum control energy
and calculating control energy for each brain region.

Analysis of Static Functional Connectivity

Denoised voxel-level data were used for analyses. Pearson’s
correlation coefficients between the ROIs’ time courses were
computed. Correlation coefficients were then converted to
normally distributed z scores using the Fisher transformation.
We then calculated between-network and within-network
RSFC for the SD and RW conditions.

Statistical Analysis

The AD2R-weighted inputs from the true receptor distribution were
compared with the randomly shuffled (12 striatal regions) via a
permutation test and the energy matrix recalculated 10,000 times.
p Values were calculated as the fraction of times that the ran-
domized distribution resulted in a higher energy than the true
distribution. All other metric comparisons between the SD and RW
conditions were achieved using 2-sided paired t tests and were
corrected for multiple comparisons with Benjamini-Hochberg when
correction was indicated. Spearman correlations were used for
correlations between control energy and transition probability.

RESULTS

Brain States

To understand the spatiotemporal dynamics of brain activity, we
applied a data-driven clustering approach to identify the whole-
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brain coactivation patterns at single time frames and then
quantified their dynamics (14). Recurrent coactivation patterns
were referred to as brain states, and we identified 6 brain states
(Figure 1) that were highly similar under the RW and SD condi-
tions (Figure S2). Based on the predominance of the network
patterns in each brain state, the 6 brain states were labeled as
somatomotor (SOM+, SOM-), visual (VIS+, VIS—), default
mode (DMN+), and visual attention (VAT+), with (+) and (-)
indicating activity above or below regional means, respectively.

SD Affects Brain State Dynamics and Transition
Probabilities

To capture dynamic characteristics of the identified brain
states, we calculated fractional occupancy (probability of
occurrence), dwell time (duration of persistence), and appear-
ance rates (frequency of appearance per minute) of each state
under the SD and RW conditions. Additionally, we computed
transition probability between brain states, complexity of brain
state transition patterns, and brain activity entropy.

SD decreased fractional occupancy in DMN+ and dwell
time in DMN+, SOM+, SOM-—, and VIS—, whereas it
increased fractional occupancy in VIS+ (Figure 2A). Regarding
transition probabilities, SD reduced the probability of persis-
tence in a brain state except for VIS+. In contrast, transition
probabilities between different brain states were increased
after SD, particularly between VIS and SOM states and from
DMN+ to VIS+/VAT+ states (Figure 2B). Figure S3 shows
brain state transition probabilities when excluding self-
transitions. SD increased the complexity of brain state transi-
tion pattern (t4o = 4.36, p < .001) (Figure 2C). Likewise, brain
activity entropy calculated based on BOLD time series
increased after SD (f40= 3.91, p < .001) (Figure S4).

Head motion under SD was greater than under RW (t4o =
5.6, p < .001). Although we restrictedly corrected for head
motion, we also examined how changes in head motion might
have contributed to the observed changes in brain state dy-
namics. Head motion, i.e., framewise displacement, was
associated with lower dwell time in SOM states and greater
fractional occupancy in the VIS+ state. DMN+ and VAT+
states and brain transition complexity were less affected by
head motion (Figure S5).

SD Altered Control Energies That Were Associated
With Transition Probabilities

We applied network control theory to calculate the control
energy, which is the minimum energy needed for transition
between brain states. The control energy required to maintain
each state is referred to as persistence energy, and the control
energy required to change states is referred to as transition
energy. Using this framework, previous studies have shown
that the brain favors transitions to brain states that require less
control energy (14,23). According to the network control the-
ory, energy is injected into the system at control points to
induce the desired transition. First, we allowed the control in-
puts to be uniformly weighted from all brain regions (model 1).
Compared with RW, SD increased the control energy needed
to transition between brain states and the persistence energy
needed to maintain each state (Figures 3A and S6A). Similar
energy increases were observed except for transition energies
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Figure 1. Recurrent brain states. (A) Brain states were identified using a data-driven approach and labeled based on the cosine similarity with a priori—
defined resting-state functional networks. Anatomical representation of brain states with their centroids mapped to colors of the corresponding 232 re-
gions of the Schaefer atlas consisting of 200 cortical and 32 subcortical regions. Centroids of each state were calculated as the mean of the regional activation
over all repetition times assigned to that state. The top label reflects resting-state functional networks with the most overall similarity, and the bottom label
reflects the resting-state functional networks with the most similarity to the high- and low-amplitude activity of each state, respectively. + and — represent
activity above or below regional means, respectively. (B) Radial plot of each brain state represents cosine similarity of its high-amplitude and low-amplitude
activity with resting-state functional networks. Larger values correspond to higher similarity. DAT, dorsal attention network; DMN, default mode network; FPN,
frontoparietal network; LIM, limbic network; SOM, somatomotor network; SUB, subcortical region; VAT, ventral attention network; VIS, visual network.

between SOM+ and VIS+, between DMN+ and VAT +, and for (Figure 3C). Consistent with previous findings (14,23), we
persistence energy for VIS+ when only allowing uniformly found that control energy was negatively associated with
weighted control inputs from 12 striatal regions (model 2) empirically observed brain state transition probability under
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Figure 2. Brain state dynamics modulated by sleep deprivation (SD). (A) Fractional occupancy, dwell time, and appearance rate of each brain state under SD
and rested wakefulness (RW). (B) Brain state transition probabilities including persistence probabilities following SD compared with RW. t Values are repre-
sented. (C) Complexity of brain state transitions. Condition comparisons (SD vs. RW) were performed using 2-sided paired t tests. *uncorrected p < .05,
**Benjamini-Hochberg-corrected p < .05. DMN, default mode network; SOM, somatomotor network; VAT, ventral attention network; VIS, visual network.
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Figure 3. Increases in control energy after sleep deprivation (SD) are negatively associated with brain state transition probability and are contributed to by
changes in striatal dopamine D, receptors (D2Rs). (A) Condition comparisons (SD > rested wakefulness [RW]) of structure-based brain state transition energy
prediction calculated with uniformly weighted whole-brain inputs. SD brain states required higher energy to maintain or transition between each state than RW
brain states. (B) Energy requirement is negatively associated with transition probability under the RW (left) and SD condition (middle). Required energy changes
also accounts for condition differences in brain state transition probability (right). Energy (E) change is calculated as (Esp — Erw)/Erw. Persistence energy for each
state is very low and not included in the figure. (C) Condition comparisons (SD > RW) of structure-based brain state transition energy prediction calculated with
uniformly weighted striatal inputs. (D) Compared with uniformly weighted striatal inputs, weighting the striatal inputs by SD-induced D2R changes leads to
significant increases in the energy required for the transitions/persistence among RW brain states (centroids). (E) Positive correlation between SD-induced and
receptor-informed changes in control energy, i.e., comparison of (C) and (D). Color bar represents the t value from paired t tests. *uncorrected p < .05,

**Benjamini-Hochberg—corrected p < .05. DMN, default mode network; SOM, somatomotor network; VAT, ventral attention network; VIS, visual network.

RW and SD conditions (Figure 3B). The extent of energy in-
creases was negatively associated with SD-induced changes
in brain state transition probabilities (Figure 3B). See the
Supplement for regional control energy results.

To investigate where differences in control energy were due
to differences in the spatial patterns and not driven by differ-
ences in amplitude (centroids) of the brain states, we normal-
ized the brain states using L2 normalization and recalculated
control energies. The findings suggested that transition en-
ergies between VIS— and SOM+/— and between VAT+ and
DMN+ were strongly influenced by differences in the spatial
patterns (Figures S6B and S7B).

Contribution of SD-Induced Striatal D2R Changes
to Control Energy

We hypothesized that the higher control energy requirement
under the SD condition than under the RW condition could be

the result of altered striatal D2R distribution following SD. Our
previous work had documented how striatal D2R binding
changed between the RW and the SD conditions (6,7). Using
this information, we tested whether changing striatal D2R
distribution under RW would lead to a similar energy landscape
as was observed under the SD condition.

We found that AD2R-weighted striatal inputs for the RW
condition (model 3) (Figure S11) resulted in higher control en-
ergy than uniformly weighted inputs for the RW condition
(model 2) (Figure 3D). There was a positive correlation between
SD-induced and receptor-informed effects on control energy
(Figure 3E). Additionally, we compared the control energy ob-
tained from the true SD-induced striatal AD2R distribution
versus that from a permutated striatal AD2R map. The true
distribution of the striatal AD2R map led to significantly higher
energy needed for brain state transitions than that from the
permutation map (Figure S12).
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The Effect of SD on Global Signal Amplitude

Because reduced vigilance was associated with higher
amplitude of BOLD activity in previous studies (25), we
compared the global signal amplitude between the RW and SD
conditions. A global mean signal was defined as the average of
the BOLD signals across 232 ROls. The standard deviation of
the global signal was defined as the global signal amplitude
(26). The global signal amplitude did not differ between the SD
and RW conditions (t40 = 0.67, p = .507).

The Effect of SD on RSFC

SD decreased between-network RSFC, particularly between
subcortical and cortical networks and between VAT/DAT and
SOMNIS and decreased anticorrelation between DMN and
VAT (Figure S13). Decreased within-network RSFC was
observed in VIS, SOM, DAT, and VAT (Figure S13).

DISCUSSION

The current study advances our mechanistic understanding of
the effects of SD on brain function by revealing 1) changes in
brain state dynamics at rest, 2) increases in the control energy
required for brain state transitions and for state persistence under
the framework of network control theory, and 3) linkage between
SD-induced changes in brain state dynamics and distribution of
striatal AD2R mediated by altered energy landscapes.

SD Effects on Brain State Dynamics

SD reduced dwell time and persistence probabilities of recurrent
brain states, with the strongest effect in DMN+ and SOM—.
With our approach, the DMN+ state was characterized by
contra-activation of DMN (high activity) and DAT (low activity),
and SOM~— was characterized by contra-activation of SOM (low
activity) and the frontoparietal network (high activity). Using a
sliding-window approach, a previous study showed reduced
dwell time in states characterized by anticorrelation between the
DMN and other brain regions after SD (5). A similar finding was
reported in another study that demonstrated that a dynamic
functional connectivity state with reduced within-network RSFC
of the DMN, VAT, and DAT and weaker anticorrelation between
these networks was associated with low arousal after SD (27).
Therefore, our findings are consistent with previous studies
highlighting the disrupted dynamics of the DMN, an internally
oriented network, and the DAT, an externally oriented network,
and impaired cognitive control for processing sensorimotor in-
puts after SD (28). Our static RSFC analyses revealed
decreased within-network RSFC in the VIS, SOM, DAT, and
VAT. Consistent with previous studies, we also found decreased
anticorrelation between DMN and VAT following SD. Addition-
ally, we observed reduced between-network RSFCs, particularly
between subcortical networks and cortical networks, which
could affect motor, cognitive, and emotional regulation (29-31),
while decreased RSFC between VAT/DAT and SOMNIS may
contribute to impaired attentional processes associated with
sleep loss (32). Furthermore, our results documented greater
brain entropy after SD, i.e., the transition patterns became more
complex and unpredictable than RW. Apart from brain state
transitions, increased brain entropy was also observed for
regional BOLD time series following SD. The extent to which SD
induced changes in brain state dynamics underlies the neural
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underpinnings of disrupted mind wandering or impairments in
sustaining attention that have been reported following SD merits
further investigation (33,34). In this study, SD did not affect
global signal amplitude, which was associated with vigilance in
previous studies (26), indicating that reduced alertness is less
likely to account for observed changes in brain state dynamics.

The Effect of SD on Control Energy and Its
Association With Brain State Dynamics

SD increased the overall control energy needed for brain state
transition and for brain state persistence. The extent of energy
increases differed in brain state transitions. Changes in control
energy after SD were primarily explained by changes in the
amplitude of brain states, with some exceptions, including
transition energies between the VIS— and SOM+/— and be-
tween the VAT+ and DMN+ that were significantly influenced
by differences in the spatial patterns of brain states. Studies
have suggested a negative correlation between control energy
calculated with network control theory and PET-derived mea-
sures of brain glucose metabolism as observed in temporal
lobe epilepsy (35) and schizophrenia (14,36). This computa-
tional evidence obtained from network control theory was
consistent with brain metabolic findings with SD showing
reduced cerebral glucose metabolism. Specifically, PET
studies with fluorodeoxyglucose showed that 24 hours of SD
led to a significant decrease in global cerebral glucose meta-
bolism with regional differences in the magnitude of these re-
ductions (37-39). SD-induced changes in global and relative
regional glucose metabolic activity may contribute to increases
in global and regional control energy and to the different en-
ergy requirements for distinct brain state transitions after SD.
Moreover, the degree of heightened control energy subse-
quent to SD exhibited a negative correlation with SD-triggered
alterations in transition probabilities among brain states,
consistent with previous investigations that employed network
control theory (14,23,40). Similarly, regions with the most
substantial increases in control energy showed the least
augmentation in brain activity entropy following SD (Figure S9).
In contrast, individuals with the greatest increases in global
control energy showed the most pronounced escalation in
brain activity entropy (Figure S10A). This finding contradicted
earlier findings that demonstrated inverse relationships be-
tween transition energy changes and either brain activity or
brain state transition entropy (23,41). In the current study, in-
dividuals demonstrating the most significant SD-induced
changes in global control energy showed the greatest
regional diversity in control energy (Figure S10C) and entropy
increases (Figure S10D). Such variations could potentially in-
fluence overall associations between global control energy and
averaged brain entropy. The finding may indicate individual
differences in compensatory brain mechanisms following SD,
wherein certain regions adapt to become more intricate and
adaptable, while others tend toward stability in brain re-
sponses to uphold certain performance levels.

Associations Between SD-Induced Changes in
D2Rs and Control Energy

In the current study, changes in striatal D2Rs following SD
resulted in control energy increases. AD2R-stimulated
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increases in control energy were positively associated with
SD-induced empirical control energy increases. Positive as-
sociations between striatal D2R and brain glucose metabolism
have been documented in Parkinson’s disease (42), obesity
(43), cocaine addiction (44), and healthy aging (45). The
observed associations of AD2R with increased control energy
could be related to its associations with reduced brain glucose
metabolism after SD.

Limitations

The current study calculated control energy under the frame-
work of network control theory through conceptual modeling,
which differs from glucose metabolic cost that has neurobio-
logical underpinnings and is measured by PET fluorodeox-
yglucose. However, as discussed above, these two measures
may be closely correlated and need future investigations. Also,
SD influences other receptors in addition to D2Rs, such as
increasing cerebral 5-HT,a receptors (46) and adenosine A4
receptors (47) that modulate brain activity and connectivity
(48). A model that includes multireceptor information may yield
better prediction of SD-induced changes in control energy and
brain dynamics. In our model, we assumed that WM structure
has minimum impact on control energy changes following SD.
However, WM microstructure in healthy participants may be
affected by one night of SD (49). Finally, to map the regional
brain changes in D2Rs from SD, we used an average AD2R
map obtained from a previous study (24), so we were unable to
determine the extent to which at an individual level, the
changes in D2R availability with SD predict changes in brain
state dynamics during SD for that person. The affinity of
['"Clraclopride for D2R is relatively low, thus, the specific
to nonspecific signal in extrastriatal regions provided by
['"Clraclopride is lower than other radiotracers such as
["'Clfallypride (50,51). For this reason, we only used striatal
D2Rs in our analyses. It would be relevant to investigate the
contribution of cortical D2R in future studies.

Conclusions

The current study uncovered high-temporal brain state dy-
namics changes following one night of SD, highlighting dis-
rupted dynamics between internally and externally oriented
brain states. The dynamic changes were associated with an
altered energy landscape contributed to by SD-induced
changes in striatal D2R distribution.
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